BRINGING OLD PHOTOS BACK TO LIFE

ABSTRACT:

Figure 1: Image restoration done by base model on images from the dataset

Quality of old photo prints degrades when kept in poor environmental conditions. The photo
content is permanently damaged due to fading and folding of photos. Manual retouching is
usually laborious and time-consuming, which leaves piles of old photos impossible to get
restored. Deep learning models usually perform poorly on photo restoration tasks, because
the degradation of old photos is a complex process, and there exists no degradation model
that can realistically render the old photo artifact. Therefore, the model learned from those
synthetic data generalizes poorly on real photos. The base paper restores severely degraded
photos through a deep learning approach using a triplet domain translation network
consisting of two auto-encoders. This is to generalize the gap with real photos as the domain
space is compact.

INTRODUCTION:

We click photos to save memories that we want to cherish. Today we can save them on our
devices. However, up until just a couple of decades ago people used to save physical copies of
photos on print-paper. Paper as we know deteriorates with time so do the pictures on them,
but the memories associated with them don’t. Many options are available to restore back to
their original state but all of them are not cost efficient and the ones which are, usually
provide a poor result.To solve this problem authors have used a deep learning approach using
variational autoencoders to restore photos close to their original state. Thus, a new effective
method has been devised to provide these restoration tasks in a cost efficient manner that
provides results that closely resemble the original photo & eliminates degradation effectively.

The models rectify the damage on the old photos and try to restore them to their original
state. The models have been trained on the same dataset and their performance has been
evaluated against one another and the results have been compared in the findings below.

IMPLEMENTATION DETAILS:

Baseline Algorithm

Technology & Tool
Python, GoogleColab

Network Architecture

N(0. D)

T o TRoR
T aduv. Ty
IRr,Zx
IL Mapping T
L
. TRy
IRV, XY e
g Ty sy
Y =y
: Yy—y

N(0,)

Figure 2&3: Representation of Latent space by base model(left) Model architecture of the base model(right)

The base model makes use of images from 3 domains (Figure 2) - real/degraded(domain R),
Ground truth(domain V) and synthetic images(domain X) that are generated by adding
structured/unstructured noise to the ground truth images. The architecture involves the
following components:

Variational Autoencoder 1 (Figure 3): This combines the real(R) and synthetic domains(X) into
a single latent space (Zr = Zx)

Variational Autoencoder 2 (Figure 3): This is trained on the clean images(Y), and converts
them into a second latent space (Zy)

Then, the mapping that restores the corrupted images to clean ones in the latent space is
learnt. T:Zx -> Zy.

Finally, generator Gy to restore the clean images from the latent space Zy.

Hyperparameters:
Adam solver [51] with 1= 0.5 and 32 = 0.999.
learning rate is set to 0.0002 for the first 100 epochs, with linear decay to zero thereafter

Pix2pi
Technology & Tool

Python, GoogleColab, Keras, Tensorflow, Matplotlib, Numpy.
Network Architecture

Conditional GANs are usually used for Image to Image translation applications such as
converting black and white images into a color image or converting aerial images into a map.
Conditional GANs have similar architecture as baseline GANs. Instead of using a latent noise

as an input to the model like GAN, Conditional GANs use some input image and some output
image to give to the model. Essentially Conditional GANs not only use the network to learn
mapping from input image to output image but also a learning function to train this
mapping. This eliminates the need for a hand engineered loss function.

Encoder-decoder U-Net

T — HE[. 0 r— Ll Lk L Ly
| -

Figure 4: Model architecture of the pix2pix model

Similar to a normal GAN architecture, conditional GAN consists of a Generator and
Discriminator model. The generator model is responsible for generating an image,
conditional on an input image. This generator model is provided with an input image and it
generates a translated version of the image. Whereas, in a discriminator model the
generator output and ground truth image is given as an input and it must determine if the
image is real or fake. In this project, an input image with scratches and noise was given to the
generator model and the model is able to generate a clean image without scratches. In this
project, for the generator model a U-net based architecture is implemented(shown in Fig 4)
and for the discriminator model a PatchGAN is implemented.

The U-net model comprises two sections: Downsampling (encoder) and Upsampling
(decoder). Downsampling involves converting a high-resolution image to a low-resolution
image with the goal that the model interprets the object in the image but at the same time
losing the spatial context of the object. This is achieved using 7 blocks of convolution
operation and batch-normalization layers clubbed together. Since there is a loss of spatial
information of the object in the image, upsampling the image is done. Due to upsampling, a
low-resolution downsampled image is converted into a high-resolution image. This is done by
6 blocks of the transpose convolution operation.

In the PatchGAN model, it classifies patches of an input image as real or fake, rather than the
entire image. This is implemented as a deep convolutional neural network, having 4 layers.
The output of the network is a single feature map of real/fake predictions that can be
averaged to give a single score.

Hyperparameter

Number of epochs = 6000

Patch size = 70x70

Lambda =100

Kernel size (generator) = 4x4

Stride (generator) =2

Batch Size =10

Learning Rate = 0.0002

Activation Function = LeakRelu (Generator and Discriminator hidden layers), Sigmoid(final
layer Discriminator), Tanh (final layer Generator)

Dropout = 0.5

CYCLEGAN:

Technology & Tool:

Google Colab, Python, Tensorflow, matplotlib
Network Architecture:

Generators - UNET (imported from tensorflow examples.models.pix2pix),
Discriminators - PatchGAN

The model makes use of 2 generators and 2 discriminators. The first generator (G) is
responsible for converting a noisy image(domain - X) to a clean image(domain - Y). The first
discriminator (Dy) is trained to distinguish the output image (G(X)) with a real value of V.

This network contains three convolutions, several residual blocks , two fractionally-strided
convolutions with stride 1 2, and one convolution that maps features to RGB. There are 6
residual blocks for 128 x 128 images and 9 blocks for 256x256 and higher-resolution training
images. For the discriminator networks a PatchGANs is used, which aims to classify whether
overlapping image patches are real or fake.

Hyperparameter:

No. of epochs = 30

Lambda (controls the significance of the cycle loss) = 8
BUFFER_SIZE =1000

BATCH_SIZE =5

Optimizer function : Adam optimizer

Deep Image Prior:

Technology & Tool:

Google Colab, Python, Matplotlib, PyTorch, ResNet, future, OS,

Network Architecture:
Generators - UNET, Discriminator- ResNet

d ds N E Y ng[] C— 1]
Input . ! HH HH H o — ;
z H D - ! ' i 1

S; Sz e SN

Uy

g . B
wlw|=0-—= [t &

'
1 ! Downsample | 1
1

Figure 5: Model Architecture of the Deep Image Prior model

Similar to pix2pix, an hourglass architecture or an encoder decoder architecture with skip
connections is used by the deep image prior algorithm. The connections that are skipped
have been marked by yellow arrows in the image above. In the right figure, n(i) marks the
number of filters at depth i for up sampling, down sampling and skip connections
respectively. Each layer in the model has been labeled with a different color corresponding to

the layer activation function used. ‘k(i)’ in the image denotes the kernel size of image at
depth i respectively.

The encoder-decoder uses LeakyRelu as a non-linearity. Strides are implemented within the
convolutional modules. The input image and the mask of the input image are used to train
the model. The masks generated by the base paper were used to train the model used in this
paper. The trained model was saved and was used to test the image in the results section.
Adam optimizer is used for the inpainting tasks.

Hyperparameter

Number of Epochs: 3001

Learning rate: 0.01

Padding: O

Input depth:1

Network used: ResNet

Noise Parameter: True

Stride: 1

Activation Function = Conv, BN, LeakyRelu (Generator and Discriminator hidden layers),
Sigmoid(final layer Discriminator)

Experiments:

Dataset:
The dataset considered for this project is from the Pascal VOC 2012 dataset. The dataset
consisted of approximately 17,000 images. All the images were of different sizes. Out of this
dataset we took a smaller subset of 500 images. For training the models we considered 400
images and for validation 100 images. Additional 50 images were taken from the original
dataset for testing the models.
Pre-processing the dataset:
Since the authors of the paper did not share the original dataset along with scratches and
patches we had to create our own dataset for this project. In order to achieve this, we applied
three different methods to create our dataset.
1. Gaussian noise: we added random gaussian noise in the dataset to get the paper
texture look in the input dataset.
2. Gray Scale: Random images were converted into gray scale images to consider black
and white images.
3. Scratches: Added random lines to replicate real scratches of an image.

& Rarlgrube

Figure 6: Image augmentation done on Pascal VOC dataset

ez
& Rarlscube

Methodology:

X2Pix
Two stages were followed to train a Pix2Pix model: training and inference. In the training
stage, the synthetic image is given to the U-net model. The synthetic image is of size
256x256x3 with scratches. As it is observed in the figure x, U-net generates and should

generate an output image with no scratches and noise. This generated image is sent to the
discriminator along with the ground truth image. The discriminator applies PatchGAN to
these and gives a result if the image is real or fake. This particular training takes a lot of
epochs to train but due to the simplicity of architecture trains faster. One advantage of cGAN
learning faster is because of the use of PatchGAN as a discriminator.

Predicted Image

Input Image

Generator
(U-Net)

Discriminator |:> Real/Fake
Ground Truth

Figure 7: Training of the Pix2pix model

In the inference stage, a random test from the test dataset image is taken and sent through
the generator to produce a clean and enhanced image as seen in the figure y.

Input Image

Predicted Image

|:> Generator |:>

Figure 8: Inference of the pix2pix model

CycleGAN:
This leads us to calculating the first adversarial loss, which is - generator 1loss + discriminator

1 loss. The second generator (F) is responsible for converting a clean image(domain - Y) to a
noisy image(domain - X). The second discriminator (Dx) is trained to distinguish the (clean)
output image (F(Y)) with a real value of X. This leads us to calculating the second adversarial
loss, which is - generator 2 loss + discriminator 2 loss.

N

X _|Y

Figure 9: Cyclic Gan working

Adversarial training alone can learn G and F that produce outputs identically distributed as
target domains Y and X respectively However, with large enough capacity, a network can
map the same set of input images to any random permutation of images in the target

domain, where any of the learned mappings can induce an output distribution that matches
the target distribution. Thus, adversarial losses alone cannot guarantee that the learned
function can map an individual input xi to a desired output yi. To further reduce the space of
possible mapping functions, the learned mappings should be cycle-consistent.

c ¥ galge
7 N R N
F F
X Y X Y rele-consistency
1 - \./—_ > —i-.\ “(‘;_\ cle- 11:); stency
cycle-consistency |, ...
' loss e O] _._)

Figure 10: Generators and Discriminators of Cyclic GAN

This requires the need of a second loss function, also known as cycle loss. This is calculated by
taking the sum of the forward reconstruction and backward reconstruction loss. Total cycle
loss = Abs(F(G(x))-x) + Abs(G(F(y))-y)

Total loss = Adversarial loss + lambda * cycle loss

Deep Image Prior:

Figure 11: How deep Prior algorithm sees model.

We apply untrained randomly initialized CNN on a single degraded image. The model is
capable of Denoising, Super resolution, Inpainting, and image restoration. Corrupted image
can be seen as a combination of a pure image and a mask of noise added to it. The
architecture of this network will affect the prior distribution in the space. It offers higher
impedance to noise and low level image statistics before the unstructured noise.

It will first find a “good looking” local minimum first and then converge to the corrupted
image because of over-fitting to the noise. If the optimization is restricted to a certain
number of iterations, we can recover the plain image output before over-fitting noise.

0* = argmin E(fq(2); z0), ¥ = fo-(2).
0
E(z;20) = ||z — ol|? ?\

256

512
" Stride 2 "\,

Stide2 16%

CONV 2

Figure 12: Architecture of DIP decoder

Pix2Pix CycleGAN DIP

Figure 13: Results of models on the same test image.

CGANS and Pix2pix faired poorly on dataset. VAE performed the best out of models but there
was some loss of information. DIP performed second best but wasn't able to upscale the
image. CGAN faired the most poorly even though it is based on the pix2pix model.

DISCUSSIONS AND CONCLUSION:

Difficulties faced: The transfer learning documentation on the base paper was not
interpretable. Flle structure required to train the Autoencoders was not given due to which
we were unable to train the base model. The original dataset used to train the baseline model
was not released to the public. Due to this we had to generate our own images. The data thus
didn't replicate the tearing degradation that occurs in the images. The scratches are in a very
linear manner and don't represent real time folds on the photographs.

Decisions taken: Initially we planned to train three different models mentioned in the paper.
Since we were unable to replicate the training of the images due to poor documentation, we
decided to train three different models which the base model is compared to. The decision to
not add patches was taken after we failed to produce realistic effects.

[hings that didn't work: Patches couldn't be added because the deterioration didn't
represent natural degradation. Base models’ hyperparameters couldn’t be tuned because of
poor documentation. A fifth sequential planned model couldn't be trained due to issue in the
source code. The code was generating a blank data file despite of code being correct. Email
has been sent to the repository’'s owner.

Conclusion: All models were able to restore the image close to ground truth. VAE and DIP
models are capable of upscaling image resolution VAE outperforms Pix2Pix, CycleGAN, DIP in
terms of scratch removal. VAE was better at detecting and removing unstructured defects
from the input data.

REFERENCES:

[Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong Chen, Jing Liao, Fang Wen, et al.
Bringing old photos back to life. arXiv preprint arXiv:i2004.09484, 2020. 1

[2] Dimitry Ulyankov, Andrea Vedald, Victor Lempitsky, Deep Image Prior arXiv preprint
arXiv:1711.10925, 2020

[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros et al. Image-to-Image Translation
with Conditional Adversarial Networks arXiv:1611.07004

[4] Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks.
https:/arxiv.org/pdf/1703.10593.pdf

https://arxiv.org/abs/2004.09484
https://arxiv.org/abs/1711.10925
https://arxiv.org/search/cs?searchtype=author&query=Isola%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Zhu%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Zhou%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Efros%2C+A+A
https://arxiv.org/abs/1611.07004
https://arxiv.org/pdf/1703.10593.pdf

